Search results

Search for "Ag doping" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • highly fluorescent gold-silver bimetallic nanomaterials with stable fluorescence properties by a simple one-pot method using thiol salts as ligands. TPN-AuAgNCs were synthesised using tiopronin (TPN) as ligand, and the clusters emitted strong red fluorescence with good burst selectivity for Fe3+ after Ag
  • + doping. The fluorescence was restored after further adding ascorbic acid (AA) based on a redox reaction. A rapid detection method for Fe3+ and AA was established and successfully used to detect Fe3+ and AA in human serum. The DMT-AuAgNCs were successfully prepared using 4,6-diaminopyrimidine-2-thiol (DMT
PDF
Album
Review
Published 03 Nov 2022

SERS active Ag–SiO2 nanoparticles obtained by laser ablation of silver in colloidal silica

  • Cristina Gellini,
  • Francesco Muniz-Miranda,
  • Alfonso Pedone and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2018, 9, 2396–2404, doi:10.3762/bjnano.9.224

Graphical Abstract
  • calculations, can also explain the SERS effect obtained by NIR excitation, even if the excitation radiation does not match the plasmonic band of the silver nanoparticles. In conclusion, a simple method is proposed to obtain Ag-doping of silica colloidal nanoparticles, avoiding complicated procedures and
PDF
Album
Supp Info
Full Research Paper
Published 06 Sep 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • exhibit promising application as a localized, prolonged drug delivery platform. Keywords: Ag doping; drug delivery; hydrophobic layer; prolonged drug release; TiO2 nanotubes; visible-light-controlled release; Introduction Titanium dioxide nanotubes (TNTs) are often employed as drug carriers, owing to
PDF
Album
Full Research Paper
Published 14 Jun 2018

AgCl-doped CdSe quantum dots with near-IR photoluminescence

  • Pavel A. Kotin,
  • Sergey S. Bubenov,
  • Natalia E. Mordvinova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2017, 8, 1156–1166, doi:10.3762/bjnano.8.117

Graphical Abstract
  • investigated. The optimal conditions for maximizing both the reaction yield and IR photoluminescence quantum yield are found. Keywords: Ag doping; CdSe quantum dots; doped semiconductor nanocrystals; IR photoluminescence; tetrapods; Introduction Colloidal quantum dots (QDs) have attracted considerable
  • low-energy band also increases. We propose that the reason for the appearance of IR peaks is the high defectiveness of the structure of EPs, which is the result of Ag doping. The following exclusion of Ag leads to even more defective structures and to an increase of the LEP intensity. The absorbance
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2017

High activity of Ag-doped Cd0.1Zn0.9S photocatalyst prepared by the hydrothermal method for hydrogen production under visible-light irradiation

  • Leny Yuliati,
  • Melody Kimi and
  • Mustaffa Shamsuddin

Beilstein J. Nanotechnol. 2014, 5, 587–595, doi:10.3762/bjnano.5.69

Graphical Abstract
  • -University Studies, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia 10.3762/bjnano.5.69 Abstract Background: The hydrothermal method was used as a new approach to prepare a series of Ag-doped Cd0.1Zn0.9S photocatalysts. The effect of Ag doping on the properties and photocatalytic
  • optimum amount of Ag doping showed the highest hydrogen production rate of 3.91 mmol/h, which was 1.7 times higher than that of undoped Cd0.1Zn0.9S. With the Ag doping, a red shift in the optical response was observed, leading to a larger portion of the visible light absorption than that of without doping
  • . In addition to the larger absorption in the visible-light region, the increase in photocatalytic activity of samples with Ag doping may also come from the Ag species facilitating electron–hole separation. Conclusion: This study demonstrated that Ag doping is a promising way to enhance the activity of
PDF
Album
Full Research Paper
Published 07 May 2014
Other Beilstein-Institut Open Science Activities